Diophantine Inequalities for Polynomial Rings
نویسندگان
چکیده
منابع مشابه
On Diophantine Sets over Polynomial Rings
We prove that the recursively enumerable relations over a polynomial ring R[t], where R is the ring of integers in a totally real number field, are exactly the Diophantine relations over R[t].
متن کاملOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملSymmetric Modular Diophantine Inequalities
In this paper we study and characterize those Diophantine inequalities axmod b ≤ x whose set of solutions is a symmetric numerical semigroup. Given two integers a and b with b = 0 we write a mod b to denote the remainder of the division of a by b. Following the notation used in [8], a modular Diophantine inequality is an expression of the form ax mod b ≤ x. The set S(a, b) of integer solutions ...
متن کاملThe Diophantine Problem for Polynomial Rings and Fields of Rational Functions1
We prove that the diophantine problem for a ring of polynomials over an integral domain of characteristic zero or for a field of rational functions over a formally real field is unsolvable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1999
ISSN: 0022-314X
DOI: 10.1006/jnth.1999.2390